Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{4x+1}{3x+12}-\frac{x+2}{2x^2+12+16}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{4x+1}{3x+12}-\frac{x+2}{2x^2+28} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{8x^3-x^2+94x+4}{6x^3+24x^2+84x+336}\end{aligned} $$ | |
| ① | Simplify denominator $$ 2x^2+ \color{blue}{12} + \color{blue}{16} = 2x^2+ \color{blue}{28} $$ |
| ② | Subtract $ \dfrac{x+2}{2x^2+28} $ from $ \dfrac{4x+1}{3x+12} $ to get $ \dfrac{ \color{purple}{ 8x^3-x^2+94x+4 } }{ 6x^3+24x^2+84x+336 }$. To subtract raitonal expressions, both fractions must have the same denominator. |