Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{\frac{4}{x}+\frac{x}{x+1}}{\frac{x^2-3x-10}{5x}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\frac{x^2+4x+4}{x^2+x}}{\frac{x^2-3x-10}{5x}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{5x^2+10x}{x^3-4x^2-5x} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{5x+10}{x^2-4x-5}\end{aligned} $$ | |
| ① | Add $ \dfrac{4}{x} $ and $ \dfrac{x}{x+1} $ to get $ \dfrac{ \color{purple}{ x^2+4x+4 } }{ x^2+x }$. To add raitonal expressions, both fractions must have the same denominator. |
| ② | Divide $ \dfrac{x^2+4x+4}{x^2+x} $ by $ \dfrac{x^2-3x-10}{5x} $ to get $ \dfrac{5x^2+10x}{x^3-4x^2-5x} $. Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Factor numerators and denominators. Step 3: Cancel common factors. Step 4: Multiply numerators and denominators. Step 5: Simplify numerator and denominator. $$ \begin{aligned} \frac{ \frac{x^2+4x+4}{x^2+x} }{ \frac{\color{blue}{x^2-3x-10}}{\color{blue}{5x}} } & \xlongequal{\text{Step 1}} \frac{x^2+4x+4}{x^2+x} \cdot \frac{\color{blue}{5x}}{\color{blue}{x^2-3x-10}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ \left( x+2 \right) \cdot \color{blue}{ \left( x+2 \right) } }{ x^2+x } \cdot \frac{ 5x }{ \left( x-5 \right) \cdot \color{blue}{ \left( x+2 \right) } } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ x+2 }{ x^2+x } \cdot \frac{ 5x }{ x-5 } \xlongequal{\text{Step 4}} \frac{ \left( x+2 \right) \cdot 5x }{ \left( x^2+x \right) \cdot \left( x-5 \right) } = \\[1ex] & \xlongequal{\text{Step 5}} \frac{ 5x^2+10x }{ x^3-5x^2+x^2-5x } = \frac{5x^2+10x}{x^3-4x^2-5x} \end{aligned} $$ |