In this example we are multiplying two binomials so FOIL method can be used.
$$ \begin{aligned} \left( \color{blue}{ x-1}\right) \cdot \left( \color{orangered}{ 11x-3}\right) &= \underbrace{ \color{blue}{x} \cdot \color{orangered}{11x} }_{\text{FIRST}} + \underbrace{ \color{blue}{x} \cdot \left( \color{orangered}{-3} \right) }_{\text{OUTER}} + \underbrace{ \left( \color{blue}{-1} \right) \cdot \color{orangered}{11x} }_{\text{INNER}} + \underbrace{ \left( \color{blue}{-1} \right) \cdot \left( \color{orangered}{-3} \right) }_{\text{LAST}} = \\ &= 11x^2 + \left( -3x\right) + \left( -11x\right) + 3 = \\ &= 11x^2 + \left( -3x\right) + \left( -11x\right) + 3 = \\ &= 11x^2-14x+3; \end{aligned} $$