In this example we are multiplying two binomials so FOIL method can be used.
$$ \begin{aligned} \left( \color{blue}{ 3x+2}\right) \cdot \left( \color{orangered}{ -x+4}\right) &= \underbrace{ \color{blue}{3x} \cdot \left( \color{orangered}{-x} \right) }_{\text{FIRST}} + \underbrace{ \color{blue}{3x} \cdot \color{orangered}{4} }_{\text{OUTER}} + \underbrace{ \color{blue}{2} \cdot \left( \color{orangered}{-x} \right) }_{\text{INNER}} + \underbrace{ \color{blue}{2} \cdot \color{orangered}{4} }_{\text{LAST}} = \\ &= -3x^2 + 12x + \left( -2x\right) + 8 = \\ &= -3x^2 + 12x + \left( -2x\right) + 8 = \\ &= -3x^2+10x+8; \end{aligned} $$