In this example we are multiplying two binomials so FOIL method can be used.
$$ \begin{aligned} \left( \color{blue}{ 3x^3+3x^2}\right) \cdot \left( \color{orangered}{ 2x+2}\right) &= \underbrace{ \color{blue}{3x^3} \cdot \color{orangered}{2x} }_{\text{FIRST}} + \underbrace{ \color{blue}{3x^3} \cdot \color{orangered}{2} }_{\text{OUTER}} + \underbrace{ \color{blue}{3x^2} \cdot \color{orangered}{2x} }_{\text{INNER}} + \underbrace{ \color{blue}{3x^2} \cdot \color{orangered}{2} }_{\text{LAST}} = \\ &= 6x^4 + 6x^3 + 6x^3 + 6x^2 = \\ &= 6x^4 + 6x^3 + 6x^3 + 6x^2 = \\ &= 6x^4+12x^3+6x^2; \end{aligned} $$