In this example we are multiplying two binomials so FOIL method can be used.
$$ \begin{aligned} \left( \color{blue}{ 3n+11}\right) \cdot \left( \color{orangered}{ -n-6}\right) &= \underbrace{ \color{blue}{3n} \cdot \left( \color{orangered}{-n} \right) }_{\text{FIRST}} + \underbrace{ \color{blue}{3n} \cdot \left( \color{orangered}{-6} \right) }_{\text{OUTER}} + \underbrace{ \color{blue}{11} \cdot \left( \color{orangered}{-n} \right) }_{\text{INNER}} + \underbrace{ \color{blue}{11} \cdot \left( \color{orangered}{-6} \right) }_{\text{LAST}} = \\ &= -3n^2 + \left( -18n\right) + \left( -11n\right) + \left( -66\right) = \\ &= -3n^2 + \left( -18n\right) + \left( -11n\right) + \left( -66\right) = \\ &= -3n^2-29n-66; \end{aligned} $$