We can multiply polynomials by using a GRID METHOD
Write one of the polynomials across the top and the other down the left side.
$$ \begin{darray}{|c|c|c|c|}\hline & \color{blue}{2x^3} & \color{blue}{-2x} & \color{blue}{-3} \\ \hline \color{blue}{x} & & & \\ \hline \color{blue}{-5} & & & \\ \hline \end{darray} $$Fill in each empty box by multiplying the intersecting terms.
$$ \begin{darray}{|c|c|c|c|}\hline & \color{blue}{2x^3} & \color{blue}{-2x} & \color{blue}{-3} \\ \hline \color{blue}{x} & \color{orangered}{2x^4} & \color{orangered}{-2x^2} & \color{orangered}{-3x} \\ \hline \color{blue}{-5} & \color{orangered}{-10x^3} & \color{orangered}{10x} & \color{orangered}{15} \\ \hline \end{darray} $$Combine like terms:
$$ 2x^4-2x^2-10x^3-3x + 10x + 15 = \\ 2x^4-10x^3-2x^2+7x+15 $$