In this example we are multiplying two binomials so FOIL method can be used.
$$ \begin{aligned} \left( \color{blue}{ 2x^2+10}\right) \cdot \left( \color{orangered}{ x-2}\right) &= \underbrace{ \color{blue}{2x^2} \cdot \color{orangered}{x} }_{\text{FIRST}} + \underbrace{ \color{blue}{2x^2} \cdot \left( \color{orangered}{-2} \right) }_{\text{OUTER}} + \underbrace{ \color{blue}{10} \cdot \color{orangered}{x} }_{\text{INNER}} + \underbrace{ \color{blue}{10} \cdot \left( \color{orangered}{-2} \right) }_{\text{LAST}} = \\ &= 2x^3 + \left( -4x^2\right) + 10x + \left( -20\right) = \\ &= 2x^3 + \left( -4x^2\right) + 10x + \left( -20\right) = \\ &= 2x^3-4x^2+10x-20; \end{aligned} $$