We can use distribution property to multiply the polynomial by the monomial.
$$ \begin{aligned} \color{blue}{2j^2} \cdot \left( 3j^2-3j-1 \right) &= \color{blue}{2j^2} \cdot 3j^2 + \color{blue}{2j^2} \cdot \left( -3j\right) + \color{blue}{2j^2} \cdot \left( -1\right) = \\ &= 6j^4-6j^3-2j^2 \end{aligned} $$