In this example we are multiplying two binomials so FOIL method can be used.
$$ \begin{aligned} \left( \color{blue}{ x^2-4}\right) \cdot \left( \color{orangered}{ 3x-5}\right) &= \underbrace{ \color{blue}{x^2} \cdot \color{orangered}{3x} }_{\text{FIRST}} + \underbrace{ \color{blue}{x^2} \cdot \left( \color{orangered}{-5} \right) }_{\text{OUTER}} + \underbrace{ \left( \color{blue}{-4} \right) \cdot \color{orangered}{3x} }_{\text{INNER}} + \underbrace{ \left( \color{blue}{-4} \right) \cdot \left( \color{orangered}{-5} \right) }_{\text{LAST}} = \\ &= 3x^3 + \left( -5x^2\right) + \left( -12x\right) + 20 = \\ &= 3x^3 + \left( -5x^2\right) + \left( -12x\right) + 20 = \\ &= 3x^3-5x^2-12x+20; \end{aligned} $$