In this example we are multiplying two binomials so FOIL method can be used.
$$ \begin{aligned} \left( \color{blue}{ n0}\right) \cdot \left( \color{orangered}{ n0}\right) &= \underbrace{ \color{blue}{n} \cdot \color{orangered}{n} }_{\text{FIRST}} + \underbrace{ \color{blue}{n} \cdot \color{orangered}{0} }_{\text{OUTER}} + \underbrace{ \color{blue}{0} \cdot \color{orangered}{n} }_{\text{INNER}} + \underbrace{ \color{blue}{0} \cdot \color{orangered}{0} }_{\text{LAST}} = \\ &= n^2 + 0n + 0n + 0 = \\ &= n^2 + 0n + 0n + 0 = \\ &= n^2; \end{aligned} $$