In this example we are multiplying two binomials so FOIL method can be used.
$$ \begin{aligned} \left( \color{blue}{ k-2}\right) \cdot \left( \color{orangered}{ 6k+1}\right) &= \underbrace{ \color{blue}{k} \cdot \color{orangered}{6k} }_{\text{FIRST}} + \underbrace{ \color{blue}{k} \cdot \color{orangered}{1} }_{\text{OUTER}} + \underbrace{ \left( \color{blue}{-2} \right) \cdot \color{orangered}{6k} }_{\text{INNER}} + \underbrace{ \left( \color{blue}{-2} \right) \cdot \color{orangered}{1} }_{\text{LAST}} = \\ &= 6k^2 + k + \left( -12k\right) + \left( -2\right) = \\ &= 6k^2 + k + \left( -12k\right) + \left( -2\right) = \\ &= 6k^2-11k-2; \end{aligned} $$