In this example we are multiplying two binomials so FOIL method can be used.
$$ \begin{aligned} \left( \color{blue}{ 2n-3}\right) \cdot \left( \color{orangered}{ 2n-3}\right) &= \underbrace{ \color{blue}{2n} \cdot \color{orangered}{2n} }_{\text{FIRST}} + \underbrace{ \color{blue}{2n} \cdot \left( \color{orangered}{-3} \right) }_{\text{OUTER}} + \underbrace{ \left( \color{blue}{-3} \right) \cdot \color{orangered}{2n} }_{\text{INNER}} + \underbrace{ \left( \color{blue}{-3} \right) \cdot \left( \color{orangered}{-3} \right) }_{\text{LAST}} = \\ &= 4n^2 + \left( -6n\right) + \left( -6n\right) + 9 = \\ &= 4n^2 + \left( -6n\right) + \left( -6n\right) + 9 = \\ &= 4n^2-12n+9; \end{aligned} $$