Tap the blue circles to see an explanation.
| $$ \begin{aligned}y^3-3y+4(y^2-y^2)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}y^3-3y+4\cdot0 \xlongequal{ } \\[1 em] & \xlongequal{ }y^3-3y0 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}y^3-3y+0 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}y^3-3y\end{aligned} $$ | |
| ① | Combine like terms: $$ \, \color{blue}{ \cancel{y^2}} \, \, \color{blue}{ -\cancel{y^2}} \, = 0 $$ |
| ② | $$ 4 \cdot 0 = 0 $$ |
| ③ | Combine like terms: $$ y^3-3y = y^3-3y $$ |