Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{x^4}{7}+3x-7x^2-4& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{x^4+21x}{7}-7x^2-4 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{x^4-49x^2+21x}{7}-4 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{x^4-49x^2+21x-28}{7}\end{aligned} $$ | |
| ① | Add $ \dfrac{x^4}{7} $ and $ 3x $ to get $ \dfrac{ \color{purple}{ x^4+21x } }{ 7 }$. Step 1: Write $ 3x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ② | Subtract $7x^2$ from $ \dfrac{x^4+21x}{7} $ to get $ \dfrac{ \color{purple}{ x^4-49x^2+21x } }{ 7 }$. Step 1: Write $ 7x^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ③ | Subtract $4$ from $ \dfrac{x^4-49x^2+21x}{7} $ to get $ \dfrac{ \color{purple}{ x^4-49x^2+21x-28 } }{ 7 }$. Step 1: Write $ 4 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |