Tap the blue circles to see an explanation.
| $$ \begin{aligned}x^3-\frac{32}{2}x^2+72x-\frac{193}{2}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}x^3 - \frac{ 32 : \color{orangered}{ 2 } }{ 2 : \color{orangered}{ 2 }} \cdot x^2 + 72x - \frac{193}{2} \xlongequal{ } \\[1 em] & \xlongequal{ }x^3-\frac{16}{1}x^2+72x-\frac{193}{2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}x^3-16x^2+72x-\frac{193}{2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{2x^3-32x^2+144x-193}{2}\end{aligned} $$ | |
| ① | Divide both the top and bottom numbers by $ \color{orangered}{ 2 } $. |
| ② | Remove 1 from denominator. |
| ③ | Subtract $ \dfrac{193}{2} $ from $ x^3-16x^2+72x $ to get $ \dfrac{ \color{purple}{ 2x^3-32x^2+144x-193 } }{ 2 }$. Step 1: Write $ x^3-16x^2+72x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |