Tap the blue circles to see an explanation.
| $$ \begin{aligned}x^2-8x+\frac{15}{10}+8x-2x^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}x^2-8x + \frac{ 15 : \color{orangered}{ 5 } }{ 10 : \color{orangered}{ 5 }} + 8x - 2x^2 \xlongequal{ } \\[1 em] & \xlongequal{ }x^2-8x+\frac{3}{2}+8x-2x^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{2x^2-16x+3}{2}+8x-2x^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{2x^2+3}{2}-2x^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{-2x^2+3}{2}\end{aligned} $$ | |
| ① | Divide both the top and bottom numbers by $ \color{orangered}{ 5 } $. |
| ② | Add $x^2-8x$ and $ \dfrac{3}{2} $ to get $ \dfrac{ \color{purple}{ 2x^2-16x+3 } }{ 2 }$. Step 1: Write $ x^2-8x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ③ | Add $ \dfrac{2x^2-16x+3}{2} $ and $ 8x $ to get $ \dfrac{ \color{purple}{ 2x^2+3 } }{ 2 }$. Step 1: Write $ 8x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ④ | Subtract $2x^2$ from $ \dfrac{2x^2+3}{2} $ to get $ \dfrac{ \color{purple}{ -2x^2+3 } }{ 2 }$. Step 1: Write $ 2x^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |