Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{x^2}{2}(x^2+1)^4-(x^2+1^5)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{x^2}{2}(x^8+4x^6+6x^4+4x^2+1)-(x^2+1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{x^{10}+4x^8+6x^6+4x^4+x^2}{2}-(x^2+1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}\frac{x^{10}+4x^8+6x^6+4x^4-x^2-2}{2}\end{aligned} $$ | |
| ① | $$ (x^2+1)^4 = (x^2+1)^2 \cdot (x^2+1)^2 $$ |
| ② | Find $ \left(x^2+1\right)^2 $ using formula. $$ (A + B)^2 = \color{blue}{A^2} + 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ x^2 } $ and $ B = \color{red}{ 1 }$. $$ \begin{aligned}\left(x^2+1\right)^2 = \color{blue}{\left( x^2 \right)^2} +2 \cdot x^2 \cdot 1 + \color{red}{1^2} = x^4+2x^2+1\end{aligned} $$ |
| ③ | Multiply each term of $ \left( \color{blue}{x^4+2x^2+1}\right) $ by each term in $ \left( x^4+2x^2+1\right) $. $$ \left( \color{blue}{x^4+2x^2+1}\right) \cdot \left( x^4+2x^2+1\right) = x^8+2x^6+x^4+2x^6+4x^4+2x^2+x^4+2x^2+1 $$ |
| ④ | Combine like terms: $$ x^8+ \color{blue}{2x^6} + \color{red}{x^4} + \color{blue}{2x^6} + \color{green}{4x^4} + \color{orange}{2x^2} + \color{green}{x^4} + \color{orange}{2x^2} +1 = \\ = x^8+ \color{blue}{4x^6} + \color{green}{6x^4} + \color{orange}{4x^2} +1 $$2x^2+2x^2=4x^2 |
| ⑤ | Multiply $ \dfrac{x^2}{2} $ by $ x^8+4x^6+6x^4+4x^2+1 $ to get $ \dfrac{ x^{10}+4x^8+6x^6+4x^4+x^2 }{ 2 } $. Step 1: Write $ x^8+4x^6+6x^4+4x^2+1 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{x^2}{2} \cdot x^8+4x^6+6x^4+4x^2+1 & \xlongequal{\text{Step 1}} \frac{x^2}{2} \cdot \frac{x^8+4x^6+6x^4+4x^2+1}{\color{red}{1}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ x^2 \cdot \left( x^8+4x^6+6x^4+4x^2+1 \right) }{ 2 \cdot 1 } \xlongequal{\text{Step 3}} \frac{ x^{10}+4x^8+6x^6+4x^4+x^2 }{ 2 } \end{aligned} $$ |
| ⑥ | Subtract $x^2+1$ from $ \dfrac{x^{10}+4x^8+6x^6+4x^4+x^2}{2} $ to get $ \dfrac{ \color{purple}{ x^{10}+4x^8+6x^6+4x^4-x^2-2 } }{ 2 }$. Step 1: Write $ x^2+1 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |