Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{x}{1+\frac{x^2}{3+\frac{x^2}{5+\frac{x^2}{7+\frac{x^2}{9+\frac{x^2}{11+\frac{x^2}{13}}}}}}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{x}{1+\frac{x^2}{3+\frac{x^2}{5+\frac{x^2}{7+\frac{x^2}{9+\frac{x^2}{\frac{x^2+143}{13}}}}}}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{x}{1+\frac{x^2}{3+\frac{x^2}{5+\frac{x^2}{7+\frac{x^2}{9+\frac{13x^2}{x^2+143}}}}}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{x}{1+\frac{x^2}{3+\frac{x^2}{5+\frac{x^2}{7+\frac{x^2}{\frac{22x^2+1287}{x^2+143}}}}}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{x}{1+\frac{x^2}{3+\frac{x^2}{5+\frac{x^2}{7+\frac{x^4+143x^2}{22x^2+1287}}}}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{x}{1+\frac{x^2}{3+\frac{x^2}{5+\frac{x^2}{\frac{x^4+297x^2+9009}{22x^2+1287}}}}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}\frac{x}{1+\frac{x^2}{3+\frac{x^2}{5+\frac{22x^4+1287x^2}{x^4+297x^2+9009}}}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} } }}}\frac{x}{1+\frac{x^2}{3+\frac{x^2}{\frac{27x^4+2772x^2+45045}{x^4+297x^2+9009}}}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle8}{\textcircled {8}} } }}}\frac{x}{1+\frac{x^2}{3+\frac{x^6+297x^4+9009x^2}{27x^4+2772x^2+45045}}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle9}{\textcircled {9}} } }}}\frac{x}{1+\frac{x^2}{\frac{x^6+378x^4+17325x^2+135135}{27x^4+2772x^2+45045}}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle10}{\textcircled {10}} } }}}\frac{x}{1+\frac{27x^6+2772x^4+45045x^2}{x^6+378x^4+17325x^2+135135}} \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle11}{\textcircled {11}} } }}}\frac{x}{\frac{28x^6+3150x^4+62370x^2+135135}{x^6+378x^4+17325x^2+135135}} \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle12}{\textcircled {12}} } }}}\frac{x^7+378x^5+17325x^3+135135x}{28x^6+3150x^4+62370x^2+135135}\end{aligned} $$ | |
| ① | Add $11$ and $ \dfrac{x^2}{13} $ to get $ \dfrac{ \color{purple}{ x^2+143 } }{ 13 }$. Step 1: Write $ 11 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ② | Divide $x^2$ by $ \dfrac{x^2+143}{13} $ to get $ \dfrac{ 13x^2 }{ x^2+143 } $. Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Write $ x^2 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 3: Multiply numerators and denominators. Step 4: Simplify numerator and denominator. $$ \begin{aligned} \frac{x^2}{ \frac{\color{blue}{x^2+143}}{\color{blue}{13}} } & \xlongequal{\text{Step 1}} x^2 \cdot \frac{\color{blue}{13}}{\color{blue}{x^2+143}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{x^2}{\color{red}{1}} \cdot \frac{13}{x^2+143} \xlongequal{\text{Step 3}} \frac{ x^2 \cdot 13 }{ 1 \cdot \left( x^2+143 \right) } = \\[1ex] & \xlongequal{\text{Step 4}} \frac{ 13x^2 }{ x^2+143 } \end{aligned} $$ |
| ③ | Add $9$ and $ \dfrac{13x^2}{x^2+143} $ to get $ \dfrac{ \color{purple}{ 22x^2+1287 } }{ x^2+143 }$. Step 1: Write $ 9 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ④ | Divide $x^2$ by $ \dfrac{22x^2+1287}{x^2+143} $ to get $ \dfrac{ x^4+143x^2 }{ 22x^2+1287 } $. Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Write $ x^2 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 3: Multiply numerators and denominators. Step 4: Simplify numerator and denominator. $$ \begin{aligned} \frac{x^2}{ \frac{\color{blue}{22x^2+1287}}{\color{blue}{x^2+143}} } & \xlongequal{\text{Step 1}} x^2 \cdot \frac{\color{blue}{x^2+143}}{\color{blue}{22x^2+1287}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{x^2}{\color{red}{1}} \cdot \frac{x^2+143}{22x^2+1287} \xlongequal{\text{Step 3}} \frac{ x^2 \cdot \left( x^2+143 \right) }{ 1 \cdot \left( 22x^2+1287 \right) } = \\[1ex] & \xlongequal{\text{Step 4}} \frac{ x^4+143x^2 }{ 22x^2+1287 } \end{aligned} $$ |
| ⑤ | Add $7$ and $ \dfrac{x^4+143x^2}{22x^2+1287} $ to get $ \dfrac{ \color{purple}{ x^4+297x^2+9009 } }{ 22x^2+1287 }$. Step 1: Write $ 7 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ⑥ | Divide $x^2$ by $ \dfrac{x^4+297x^2+9009}{22x^2+1287} $ to get $ \dfrac{ 22x^4+1287x^2 }{ x^4+297x^2+9009 } $. Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Write $ x^2 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 3: Multiply numerators and denominators. Step 4: Simplify numerator and denominator. $$ \begin{aligned} \frac{x^2}{ \frac{\color{blue}{x^4+297x^2+9009}}{\color{blue}{22x^2+1287}} } & \xlongequal{\text{Step 1}} x^2 \cdot \frac{\color{blue}{22x^2+1287}}{\color{blue}{x^4+297x^2+9009}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{x^2}{\color{red}{1}} \cdot \frac{22x^2+1287}{x^4+297x^2+9009} \xlongequal{\text{Step 3}} \frac{ x^2 \cdot \left( 22x^2+1287 \right) }{ 1 \cdot \left( x^4+297x^2+9009 \right) } = \\[1ex] & \xlongequal{\text{Step 4}} \frac{ 22x^4+1287x^2 }{ x^4+297x^2+9009 } \end{aligned} $$ |
| ⑦ | Add $5$ and $ \dfrac{22x^4+1287x^2}{x^4+297x^2+9009} $ to get $ \dfrac{ \color{purple}{ 27x^4+2772x^2+45045 } }{ x^4+297x^2+9009 }$. Step 1: Write $ 5 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ⑧ | Divide $x^2$ by $ \dfrac{27x^4+2772x^2+45045}{x^4+297x^2+9009} $ to get $ \dfrac{ x^6+297x^4+9009x^2 }{ 27x^4+2772x^2+45045 } $. Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Write $ x^2 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 3: Multiply numerators and denominators. Step 4: Simplify numerator and denominator. $$ \begin{aligned} \frac{x^2}{ \frac{\color{blue}{27x^4+2772x^2+45045}}{\color{blue}{x^4+297x^2+9009}} } & \xlongequal{\text{Step 1}} x^2 \cdot \frac{\color{blue}{x^4+297x^2+9009}}{\color{blue}{27x^4+2772x^2+45045}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{x^2}{\color{red}{1}} \cdot \frac{x^4+297x^2+9009}{27x^4+2772x^2+45045} \xlongequal{\text{Step 3}} \frac{ x^2 \cdot \left( x^4+297x^2+9009 \right) }{ 1 \cdot \left( 27x^4+2772x^2+45045 \right) } = \\[1ex] & \xlongequal{\text{Step 4}} \frac{ x^6+297x^4+9009x^2 }{ 27x^4+2772x^2+45045 } \end{aligned} $$ |
| ⑨ | Add $3$ and $ \dfrac{x^6+297x^4+9009x^2}{27x^4+2772x^2+45045} $ to get $ \dfrac{ \color{purple}{ x^6+378x^4+17325x^2+135135 } }{ 27x^4+2772x^2+45045 }$. Step 1: Write $ 3 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ⑩ | Divide $x^2$ by $ \dfrac{x^6+378x^4+17325x^2+135135}{27x^4+2772x^2+45045} $ to get $ \dfrac{ 27x^6+2772x^4+45045x^2 }{ x^6+378x^4+17325x^2+135135 } $. Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Write $ x^2 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 3: Multiply numerators and denominators. Step 4: Simplify numerator and denominator. $$ \begin{aligned} \frac{x^2}{ \frac{\color{blue}{x^6+378x^4+17325x^2+135135}}{\color{blue}{27x^4+2772x^2+45045}} } & \xlongequal{\text{Step 1}} x^2 \cdot \frac{\color{blue}{27x^4+2772x^2+45045}}{\color{blue}{x^6+378x^4+17325x^2+135135}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{x^2}{\color{red}{1}} \cdot \frac{27x^4+2772x^2+45045}{x^6+378x^4+17325x^2+135135} \xlongequal{\text{Step 3}} \frac{ x^2 \cdot \left( 27x^4+2772x^2+45045 \right) }{ 1 \cdot \left( x^6+378x^4+17325x^2+135135 \right) } = \\[1ex] & \xlongequal{\text{Step 4}} \frac{ 27x^6+2772x^4+45045x^2 }{ x^6+378x^4+17325x^2+135135 } \end{aligned} $$ |
| ⑪ | Add $1$ and $ \dfrac{27x^6+2772x^4+45045x^2}{x^6+378x^4+17325x^2+135135} $ to get $ \dfrac{ \color{purple}{ 28x^6+3150x^4+62370x^2+135135 } }{ x^6+378x^4+17325x^2+135135 }$. Step 1: Write $ 1 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ⑫ | Divide $x$ by $ \dfrac{28x^6+3150x^4+62370x^2+135135}{x^6+378x^4+17325x^2+135135} $ to get $ \dfrac{ x^7+378x^5+17325x^3+135135x }{ 28x^6+3150x^4+62370x^2+135135 } $. Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Write $ x $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 3: Multiply numerators and denominators. Step 4: Simplify numerator and denominator. $$ \begin{aligned} \frac{x}{ \frac{\color{blue}{28x^6+3150x^4+62370x^2+135135}}{\color{blue}{x^6+378x^4+17325x^2+135135}} } & \xlongequal{\text{Step 1}} x \cdot \frac{\color{blue}{x^6+378x^4+17325x^2+135135}}{\color{blue}{28x^6+3150x^4+62370x^2+135135}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{x}{\color{red}{1}} \cdot \frac{x^6+378x^4+17325x^2+135135}{28x^6+3150x^4+62370x^2+135135} \xlongequal{\text{Step 3}} \frac{ x \cdot \left( x^6+378x^4+17325x^2+135135 \right) }{ 1 \cdot \left( 28x^6+3150x^4+62370x^2+135135 \right) } = \\[1ex] & \xlongequal{\text{Step 4}} \frac{ x^7+378x^5+17325x^3+135135x }{ 28x^6+3150x^4+62370x^2+135135 } \end{aligned} $$ |