Tap the blue circles to see an explanation.
| $$ \begin{aligned}x(x+6)(9x+1)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(x^2+6x)(9x+1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}9x^3+x^2+54x^2+6x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}9x^3+55x^2+6x\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{x} $ by $ \left( x+6\right) $ $$ \color{blue}{x} \cdot \left( x+6\right) = x^2+6x $$ |
| ② | Multiply each term of $ \left( \color{blue}{x^2+6x}\right) $ by each term in $ \left( 9x+1\right) $. $$ \left( \color{blue}{x^2+6x}\right) \cdot \left( 9x+1\right) = 9x^3+x^2+54x^2+6x $$ |
| ③ | Combine like terms: $$ 9x^3+ \color{blue}{x^2} + \color{blue}{54x^2} +6x = 9x^3+ \color{blue}{55x^2} +6x $$ |