Tap the blue circles to see an explanation.
| $$ \begin{aligned}x(x+2)(4x-1)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(x^2+2x)(4x-1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}4x^3-x^2+8x^2-2x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}4x^3+7x^2-2x\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{x} $ by $ \left( x+2\right) $ $$ \color{blue}{x} \cdot \left( x+2\right) = x^2+2x $$ |
| ② | Multiply each term of $ \left( \color{blue}{x^2+2x}\right) $ by each term in $ \left( 4x-1\right) $. $$ \left( \color{blue}{x^2+2x}\right) \cdot \left( 4x-1\right) = 4x^3-x^2+8x^2-2x $$ |
| ③ | Combine like terms: $$ 4x^3 \color{blue}{-x^2} + \color{blue}{8x^2} -2x = 4x^3+ \color{blue}{7x^2} -2x $$ |