Tap the blue circles to see an explanation.
| $$ \begin{aligned}x(x-1)(x-2)^2(x^2-3x+1)-x(x-1)(x-2)(x-1^2)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}x(x-1)(x^2-4x+4)(x^2-3x+1)-x(x-1)(x-2)(x-1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(x^2-x)(x^2-4x+4)(x^2-3x+1)-(x^2-x)(x-2)(x-1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}(x^4-4x^3+4x^2-x^3+4x^2-4x)(x^2-3x+1)-(x^3-2x^2-x^2+2x)(x-1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}(x^4-5x^3+8x^2-4x)(x^2-3x+1)-(x^3-3x^2+2x)(x-1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}x^6-8x^5+24x^4-33x^3+20x^2-4x-(x^4-x^3-3x^3+3x^2+2x^2-2x) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} } }}}x^6-8x^5+24x^4-33x^3+20x^2-4x-(x^4-4x^3+5x^2-2x) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle8}{\textcircled {8}} } }}}x^6-8x^5+24x^4-33x^3+20x^2-4x-x^4+4x^3-5x^2+2x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle9}{\textcircled {9}} } }}}x^6-8x^5+23x^4-29x^3+15x^2-2x\end{aligned} $$ | |
| ① | Find $ \left(x-2\right)^2 $ using formula. $$ (A - B)^2 = \color{blue}{A^2} - 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ x } $ and $ B = \color{red}{ 2 }$. $$ \begin{aligned}\left(x-2\right)^2 = \color{blue}{x^2} -2 \cdot x \cdot 2 + \color{red}{2^2} = x^2-4x+4\end{aligned} $$$$ x^2 = 1^2x^2 = x^2 $$ |
| ② | Multiply $ \color{blue}{x} $ by $ \left( x-1\right) $ $$ \color{blue}{x} \cdot \left( x-1\right) = x^2-x $$Multiply $ \color{blue}{x} $ by $ \left( x-1\right) $ $$ \color{blue}{x} \cdot \left( x-1\right) = x^2-x $$ |
| ③ | Multiply each term of $ \left( \color{blue}{x^2-x}\right) $ by each term in $ \left( x^2-4x+4\right) $. $$ \left( \color{blue}{x^2-x}\right) \cdot \left( x^2-4x+4\right) = x^4-4x^3+4x^2-x^3+4x^2-4x $$Multiply each term of $ \left( \color{blue}{x^2-x}\right) $ by each term in $ \left( x-2\right) $. $$ \left( \color{blue}{x^2-x}\right) \cdot \left( x-2\right) = x^3-2x^2-x^2+2x $$ |
| ④ | Combine like terms: $$ x^4 \color{blue}{-4x^3} + \color{red}{4x^2} \color{blue}{-x^3} + \color{red}{4x^2} -4x = x^4 \color{blue}{-5x^3} + \color{red}{8x^2} -4x $$Combine like terms: $$ x^3 \color{blue}{-2x^2} \color{blue}{-x^2} +2x = x^3 \color{blue}{-3x^2} +2x $$ |
| ⑤ | Multiply each term of $ \left( \color{blue}{x^4-5x^3+8x^2-4x}\right) $ by each term in $ \left( x^2-3x+1\right) $. $$ \left( \color{blue}{x^4-5x^3+8x^2-4x}\right) \cdot \left( x^2-3x+1\right) = \\ = x^6-3x^5+x^4-5x^5+15x^4-5x^3+8x^4-24x^3+8x^2-4x^3+12x^2-4x $$ |
| ⑥ | Combine like terms: $$ x^6 \color{blue}{-3x^5} + \color{red}{x^4} \color{blue}{-5x^5} + \color{green}{15x^4} \color{orange}{-5x^3} + \color{green}{8x^4} \color{blue}{-24x^3} + \color{red}{8x^2} \color{blue}{-4x^3} + \color{red}{12x^2} -4x = \\ = x^6 \color{blue}{-8x^5} + \color{green}{24x^4} \color{blue}{-33x^3} + \color{red}{20x^2} -4x $$Multiply each term of $ \left( \color{blue}{x^3-3x^2+2x}\right) $ by each term in $ \left( x-1\right) $. $$ \left( \color{blue}{x^3-3x^2+2x}\right) \cdot \left( x-1\right) = x^4-x^3-3x^3+3x^2+2x^2-2x $$ |
| ⑦ | Combine like terms: $$ x^4 \color{blue}{-x^3} \color{blue}{-3x^3} + \color{red}{3x^2} + \color{red}{2x^2} -2x = x^4 \color{blue}{-4x^3} + \color{red}{5x^2} -2x $$ |
| ⑧ | Remove the parentheses by changing the sign of each term within them. $$ - \left( x^4-4x^3+5x^2-2x \right) = -x^4+4x^3-5x^2+2x $$ |
| ⑨ | Combine like terms: $$ x^6-8x^5+ \color{blue}{24x^4} \color{red}{-33x^3} + \color{green}{20x^2} \color{orange}{-4x} \color{blue}{-x^4} + \color{red}{4x^3} \color{green}{-5x^2} + \color{orange}{2x} = \\ = x^6-8x^5+ \color{blue}{23x^4} \color{red}{-29x^3} + \color{green}{15x^2} \color{orange}{-2x} $$ |