Tap the blue circles to see an explanation.
| $$ \begin{aligned}x(x^2+3)+4(2x+1)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}x^3+3x+8x+4 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}x^3+11x+4\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{x} $ by $ \left( x^2+3\right) $ $$ \color{blue}{x} \cdot \left( x^2+3\right) = x^3+3x $$Multiply $ \color{blue}{4} $ by $ \left( 2x+1\right) $ $$ \color{blue}{4} \cdot \left( 2x+1\right) = 8x+4 $$ |
| ② | Combine like terms: $$ x^3+ \color{blue}{3x} + \color{blue}{8x} +4 = x^3+ \color{blue}{11x} +4 $$ |