Tap the blue circles to see an explanation.
| $$ \begin{aligned}x(2x-1)(2x+3)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(2x^2-x)(2x+3) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}4x^3+6x^2-2x^2-3x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}4x^3+4x^2-3x\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{x} $ by $ \left( 2x-1\right) $ $$ \color{blue}{x} \cdot \left( 2x-1\right) = 2x^2-x $$ |
| ② | Multiply each term of $ \left( \color{blue}{2x^2-x}\right) $ by each term in $ \left( 2x+3\right) $. $$ \left( \color{blue}{2x^2-x}\right) \cdot \left( 2x+3\right) = 4x^3+6x^2-2x^2-3x $$ |
| ③ | Combine like terms: $$ 4x^3+ \color{blue}{6x^2} \color{blue}{-2x^2} -3x = 4x^3+ \color{blue}{4x^2} -3x $$ |