Tap the blue circles to see an explanation.
| $$ \begin{aligned}x(2x-1(2x+3))& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}x(2x-(2x+3)) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}x(2x-2x-3) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}x\cdot(-3)\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{1} $ by $ \left( 2x+3\right) $ $$ \color{blue}{1} \cdot \left( 2x+3\right) = 2x+3 $$ |
| ② | Remove the parentheses by changing the sign of each term within them. $$ - \left( 2x+3 \right) = -2x-3 $$ |
| ③ | Combine like terms: $$ \, \color{blue}{ \cancel{2x}} \, \, \color{blue}{ -\cancel{2x}} \,-3 = -3 $$ |