Tap the blue circles to see an explanation.
| $$ \begin{aligned}a\frac{b^2}{a}b-ab\frac{c}{a}b+a\frac{b}{a}b& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(a\frac{b^2}{a}-ab\frac{c}{a})b+bb \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}(1b^2-\frac{abc}{a})b+bb \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} } }}}\frac{ab^2-abc}{a}b+bb \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle8}{\textcircled {8}} \htmlClass{explanationCircle explanationCircle9}{\textcircled {9}} } }}}\frac{ab^3-ab^2c}{a}+bb \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle10}{\textcircled {10}} } }}}\frac{ab^3-ab^2c}{a}+b^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle11}{\textcircled {11}} } }}}\frac{ab^3-ab^2c+ab^2}{a}\end{aligned} $$ | |
| ① | Use the distributive property. |
| ② | Multiply $a$ by $ \dfrac{b}{a} $ to get $ b$. Step 1: Write $ a $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Cancel $ \color{blue}{ a } $ in first and second fraction. Step 3: Multiply numerators and denominators. Step 4: Simplify numerator and denominator. $$ \begin{aligned} a \cdot \frac{b}{a} & \xlongequal{\text{Step 1}} \frac{a}{\color{red}{1}} \cdot \frac{b}{a} \xlongequal{\text{Step 2}} \frac{\color{blue}{1}}{1} \cdot \frac{b}{\color{blue}{1}} = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 1 \cdot b }{ 1 \cdot 1 } \xlongequal{\text{Step 4}} \frac{ b }{ 1 } =b \end{aligned} $$ |
| ③ | Multiply $a$ by $ \dfrac{b^2}{a} $ to get $ b^2$. Step 1: Write $ a $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Cancel $ \color{blue}{ a } $ in first and second fraction. Step 3: Multiply numerators and denominators. Step 4: Simplify numerator and denominator. $$ \begin{aligned} a \cdot \frac{b^2}{a} & \xlongequal{\text{Step 1}} \frac{a}{\color{red}{1}} \cdot \frac{b^2}{a} \xlongequal{\text{Step 2}} \frac{\color{blue}{1}}{1} \cdot \frac{b^2}{\color{blue}{1}} = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 1 \cdot b^2 }{ 1 \cdot 1 } \xlongequal{\text{Step 4}} \frac{ b^2 }{ 1 } =b^2 \end{aligned} $$ |
| ④ | Multiply $ab$ by $ \dfrac{c}{a} $ to get $ \dfrac{ abc }{ a } $. Step 1: Write $ ab $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} ab \cdot \frac{c}{a} & \xlongequal{\text{Step 1}} \frac{ab}{\color{red}{1}} \cdot \frac{c}{a} \xlongequal{\text{Step 2}} \frac{ ab \cdot c }{ 1 \cdot a } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ abc }{ a } \end{aligned} $$ |
| ⑤ | Multiply $a$ by $ \dfrac{b}{a} $ to get $ b$. Step 1: Write $ a $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Cancel $ \color{blue}{ a } $ in first and second fraction. Step 3: Multiply numerators and denominators. Step 4: Simplify numerator and denominator. $$ \begin{aligned} a \cdot \frac{b}{a} & \xlongequal{\text{Step 1}} \frac{a}{\color{red}{1}} \cdot \frac{b}{a} \xlongequal{\text{Step 2}} \frac{\color{blue}{1}}{1} \cdot \frac{b}{\color{blue}{1}} = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 1 \cdot b }{ 1 \cdot 1 } \xlongequal{\text{Step 4}} \frac{ b }{ 1 } =b \end{aligned} $$ |
| ⑥ | Subtract $ \dfrac{abc}{a} $ from $ b^2 $ to get $ \dfrac{ \color{purple}{ ab^2-abc } }{ a }$. Step 1: Write $ b^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ⑦ | Multiply $a$ by $ \dfrac{b}{a} $ to get $ b$. Step 1: Write $ a $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Cancel $ \color{blue}{ a } $ in first and second fraction. Step 3: Multiply numerators and denominators. Step 4: Simplify numerator and denominator. $$ \begin{aligned} a \cdot \frac{b}{a} & \xlongequal{\text{Step 1}} \frac{a}{\color{red}{1}} \cdot \frac{b}{a} \xlongequal{\text{Step 2}} \frac{\color{blue}{1}}{1} \cdot \frac{b}{\color{blue}{1}} = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 1 \cdot b }{ 1 \cdot 1 } \xlongequal{\text{Step 4}} \frac{ b }{ 1 } =b \end{aligned} $$ |
| ⑧ | Multiply $ \dfrac{ab^2-abc}{a} $ by $ b $ to get $ \dfrac{ ab^3-ab^2c }{ a } $. Step 1: Write $ b $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{ab^2-abc}{a} \cdot b & \xlongequal{\text{Step 1}} \frac{ab^2-abc}{a} \cdot \frac{b}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ \left( ab^2-abc \right) \cdot b }{ a \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ ab^3-ab^2c }{ a } \end{aligned} $$ |
| ⑨ | Multiply $a$ by $ \dfrac{b}{a} $ to get $ b$. Step 1: Write $ a $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Cancel $ \color{blue}{ a } $ in first and second fraction. Step 3: Multiply numerators and denominators. Step 4: Simplify numerator and denominator. $$ \begin{aligned} a \cdot \frac{b}{a} & \xlongequal{\text{Step 1}} \frac{a}{\color{red}{1}} \cdot \frac{b}{a} \xlongequal{\text{Step 2}} \frac{\color{blue}{1}}{1} \cdot \frac{b}{\color{blue}{1}} = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 1 \cdot b }{ 1 \cdot 1 } \xlongequal{\text{Step 4}} \frac{ b }{ 1 } =b \end{aligned} $$ |
| ⑩ | $$ 1 b b = b^{1 + 1} = b^2 $$ |
| ⑪ | Add $ \dfrac{ab^3-ab^2c}{a} $ and $ b^2 $ to get $ \dfrac{ \color{purple}{ ab^3-ab^2c+ab^2 } }{ a }$. Step 1: Write $ b^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |