Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{a^5}{6}-\frac{a^5}{3}+\frac{a^5}{2}-5\frac{a^5}{12}-2\frac{a^5}{15}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-\frac{a^5}{6}+\frac{a^5}{2}-\frac{5a^5}{12}-\frac{2a^5}{15} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}\frac{2a^5}{6}-\frac{5a^5}{12}-\frac{2a^5}{15} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} \htmlClass{explanationCircle explanationCircle8}{\textcircled {8}} } }}}-\frac{a^5}{12}-\frac{2a^5}{15} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle9}{\textcircled {9}} } }}}-\frac{13a^5}{60}\end{aligned} $$ | |
| ① | Subtract $ \dfrac{a^5}{3} $ from $ \dfrac{a^5}{6} $ to get $ \dfrac{ \color{purple}{ -a^5 } }{ 6 }$. To subtract raitonal expressions, both fractions must have the same denominator. |
| ② | Multiply $5$ by $ \dfrac{a^5}{12} $ to get $ \dfrac{ 5a^5 }{ 12 } $. Step 1: Write $ 5 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 5 \cdot \frac{a^5}{12} & \xlongequal{\text{Step 1}} \frac{5}{\color{red}{1}} \cdot \frac{a^5}{12} \xlongequal{\text{Step 2}} \frac{ 5 \cdot a^5 }{ 1 \cdot 12 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 5a^5 }{ 12 } \end{aligned} $$ |
| ③ | Multiply $2$ by $ \dfrac{a^5}{15} $ to get $ \dfrac{ 2a^5 }{ 15 } $. Step 1: Write $ 2 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 2 \cdot \frac{a^5}{15} & \xlongequal{\text{Step 1}} \frac{2}{\color{red}{1}} \cdot \frac{a^5}{15} \xlongequal{\text{Step 2}} \frac{ 2 \cdot a^5 }{ 1 \cdot 15 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 2a^5 }{ 15 } \end{aligned} $$ |
| ④ | Add $ \dfrac{-a^5}{6} $ and $ \dfrac{a^5}{2} $ to get $ \dfrac{ \color{purple}{ 2a^5 } }{ 6 }$. To add raitonal expressions, both fractions must have the same denominator. |
| ⑤ | Multiply $5$ by $ \dfrac{a^5}{12} $ to get $ \dfrac{ 5a^5 }{ 12 } $. Step 1: Write $ 5 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 5 \cdot \frac{a^5}{12} & \xlongequal{\text{Step 1}} \frac{5}{\color{red}{1}} \cdot \frac{a^5}{12} \xlongequal{\text{Step 2}} \frac{ 5 \cdot a^5 }{ 1 \cdot 12 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 5a^5 }{ 12 } \end{aligned} $$ |
| ⑥ | Multiply $2$ by $ \dfrac{a^5}{15} $ to get $ \dfrac{ 2a^5 }{ 15 } $. Step 1: Write $ 2 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 2 \cdot \frac{a^5}{15} & \xlongequal{\text{Step 1}} \frac{2}{\color{red}{1}} \cdot \frac{a^5}{15} \xlongequal{\text{Step 2}} \frac{ 2 \cdot a^5 }{ 1 \cdot 15 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 2a^5 }{ 15 } \end{aligned} $$ |
| ⑦ | Subtract $ \dfrac{5a^5}{12} $ from $ \dfrac{2a^5}{6} $ to get $ \dfrac{ \color{purple}{ -a^5 } }{ 12 }$. To subtract raitonal expressions, both fractions must have the same denominator. |
| ⑧ | Multiply $2$ by $ \dfrac{a^5}{15} $ to get $ \dfrac{ 2a^5 }{ 15 } $. Step 1: Write $ 2 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 2 \cdot \frac{a^5}{15} & \xlongequal{\text{Step 1}} \frac{2}{\color{red}{1}} \cdot \frac{a^5}{15} \xlongequal{\text{Step 2}} \frac{ 2 \cdot a^5 }{ 1 \cdot 15 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 2a^5 }{ 15 } \end{aligned} $$ |
| ⑨ | Subtract $ \dfrac{2a^5}{15} $ from $ \dfrac{-a^5}{12} $ to get $ \dfrac{ \color{purple}{ -13a^5 } }{ 60 }$. To subtract raitonal expressions, both fractions must have the same denominator. |