Tap the blue circles to see an explanation.
| $$ \begin{aligned}a^3-a^2-\frac{a}{a}-2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{a^4-a^3-a}{a}-2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{a^4-a^3-3a}{a}\end{aligned} $$ | |
| ① | Subtract $ \dfrac{a}{a} $ from $ a^3-a^2 $ to get $ \dfrac{ \color{purple}{ a^4-a^3-a } }{ a }$. Step 1: Write $ a^3-a^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ② | Subtract $2$ from $ \dfrac{a^4-a^3-a}{a} $ to get $ \dfrac{ \color{purple}{ a^4-a^3-3a } }{ a }$. Step 1: Write $ 2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |