Tap the blue circles to see an explanation.
| $$ \begin{aligned}a^3\frac{a-x}{3}-a^2x(a-x)-a^2\frac{(a-x)^2}{2}+2ax^2(a-x)+ax(a-x)^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}a^3\frac{a-x}{3}-a^2x(a-x)-a^2\frac{(a-x)^2}{2}+2ax^2(a-x)+ax(1a^2-2ax+x^2) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}a^3\frac{a-x}{3}-(1a^3x-a^2x^2)-a^2\frac{(a-x)^2}{2}+2a^2x^2-2ax^3+a^3x-2a^2x^2+ax^3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{a^4-a^3x}{3}-(1a^3x-a^2x^2)-a^2\frac{a^2-2ax+x^2}{2}+2a^2x^2-2ax^3+a^3x-2a^2x^2+ax^3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}\frac{a^4-4a^3x+3a^2x^2}{3}-\frac{a^4-2a^3x+a^2x^2}{2}+2a^2x^2-2ax^3+a^3x-2a^2x^2+ax^3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} } }}}\frac{-a^4-2a^3x+3a^2x^2}{6}+2a^2x^2-2ax^3+a^3x-2a^2x^2+ax^3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle8}{\textcircled {8}} } }}}\frac{-a^4-2a^3x+15a^2x^2-12ax^3}{6}+a^3x-2a^2x^2+ax^3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle9}{\textcircled {9}} } }}}\frac{-a^4+4a^3x+3a^2x^2-6ax^3}{6}\end{aligned} $$ | |
| ① | Find $ \left(a-x\right)^2 $ using formula. $$ (A - B)^2 = \color{blue}{A^2} - 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ a } $ and $ B = \color{red}{ x }$. $$ \begin{aligned}\left(a-x\right)^2 = \color{blue}{a^2} -2 \cdot a \cdot x + \color{red}{x^2} = a^2-2ax+x^2\end{aligned} $$ |
| ② | Multiply $ \color{blue}{a^2x} $ by $ \left( a-x\right) $ $$ \color{blue}{a^2x} \cdot \left( a-x\right) = a^3x-a^2x^2 $$Multiply $ \color{blue}{2ax^2} $ by $ \left( a-x\right) $ $$ \color{blue}{2ax^2} \cdot \left( a-x\right) = 2a^2x^2-2ax^3 $$Multiply $ \color{blue}{ax} $ by $ \left( a^2-2ax+x^2\right) $ $$ \color{blue}{ax} \cdot \left( a^2-2ax+x^2\right) = a^3x-2a^2x^2+ax^3 $$ |
| ③ | Multiply $a^3$ by $ \dfrac{a-x}{3} $ to get $ \dfrac{ a^4-a^3x }{ 3 } $. Step 1: Write $ a^3 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} a^3 \cdot \frac{a-x}{3} & \xlongequal{\text{Step 1}} \frac{a^3}{\color{red}{1}} \cdot \frac{a-x}{3} \xlongequal{\text{Step 2}} \frac{ a^3 \cdot \left( a-x \right) }{ 1 \cdot 3 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ a^4-a^3x }{ 3 } \end{aligned} $$ |
| ④ | Find $ \left(a-x\right)^2 $ using formula. $$ (A - B)^2 = \color{blue}{A^2} - 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ a } $ and $ B = \color{red}{ x }$. $$ \begin{aligned}\left(a-x\right)^2 = \color{blue}{a^2} -2 \cdot a \cdot x + \color{red}{x^2} = a^2-2ax+x^2\end{aligned} $$ |
| ⑤ | Subtract $a^3x-a^2x^2$ from $ \dfrac{a^4-a^3x}{3} $ to get $ \dfrac{ \color{purple}{ a^4-4a^3x+3a^2x^2 } }{ 3 }$. Step 1: Write $ a^3x-a^2x^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ⑥ | Multiply $a^2$ by $ \dfrac{a^2-2ax+x^2}{2} $ to get $ \dfrac{ a^4-2a^3x+a^2x^2 }{ 2 } $. Step 1: Write $ a^2 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} a^2 \cdot \frac{a^2-2ax+x^2}{2} & \xlongequal{\text{Step 1}} \frac{a^2}{\color{red}{1}} \cdot \frac{a^2-2ax+x^2}{2} \xlongequal{\text{Step 2}} \frac{ a^2 \cdot \left( a^2-2ax+x^2 \right) }{ 1 \cdot 2 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ a^4-2a^3x+a^2x^2 }{ 2 } \end{aligned} $$ |
| ⑦ | Subtract $ \dfrac{a^4-2a^3x+a^2x^2}{2} $ from $ \dfrac{a^4-4a^3x+3a^2x^2}{3} $ to get $ \dfrac{ \color{purple}{ -a^4-2a^3x+3a^2x^2 } }{ 6 }$. To subtract raitonal expressions, both fractions must have the same denominator. |
| ⑧ | Add $ \dfrac{-a^4-2a^3x+3a^2x^2}{6} $ and $ 2a^2x^2-2ax^3 $ to get $ \dfrac{ \color{purple}{ -a^4-2a^3x+15a^2x^2-12ax^3 } }{ 6 }$. Step 1: Write $ 2a^2x^2-2ax^3 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ⑨ | Add $ \dfrac{-a^4-2a^3x+15a^2x^2-12ax^3}{6} $ and $ a^3x-2a^2x^2+ax^3 $ to get $ \dfrac{ \color{purple}{ -a^4+4a^3x+3a^2x^2-6ax^3 } }{ 6 }$. Step 1: Write $ a^3x-2a^2x^2+ax^3 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |