Tap the blue circles to see an explanation.
| $$ \begin{aligned}a\frac{x^3+2x^2y-4xy^2-8y^3}{(x^2+4xy+4y^2)(x-2y)}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}a\frac{x^3+2x^2y-4xy^2-8y^3}{x^3-2x^2y+4x^2y-8xy^2+4xy^2-8y^3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}a\frac{x^3+2x^2y-4xy^2-8y^3}{x^3+2x^2y-4xy^2-8y^3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{ax^3+2ax^2y-4axy^2-8ay^3}{x^3+2x^2y-4xy^2-8y^3}\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{x^2+4xy+4y^2}\right) $ by each term in $ \left( x-2y\right) $. $$ \left( \color{blue}{x^2+4xy+4y^2}\right) \cdot \left( x-2y\right) = x^3-2x^2y+4x^2y-8xy^2+4xy^2-8y^3 $$ |
| ② | Combine like terms: $$ x^3 \color{blue}{-2x^2y} + \color{blue}{4x^2y} \color{red}{-8xy^2} + \color{red}{4xy^2} -8y^3 = x^3+ \color{blue}{2x^2y} \color{red}{-4xy^2} -8y^3 $$ |
| ③ | Multiply $a$ by $ \dfrac{x^3+2x^2y-4xy^2-8y^3}{x^3+2x^2y-4xy^2-8y^3} $ to get $ \dfrac{ ax^3+2ax^2y-4axy^2-8ay^3 }{ x^3+2x^2y-4xy^2-8y^3 } $. Step 1: Write $ a $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} a \cdot \frac{x^3+2x^2y-4xy^2-8y^3}{x^3+2x^2y-4xy^2-8y^3} & \xlongequal{\text{Step 1}} \frac{a}{\color{red}{1}} \cdot \frac{x^3+2x^2y-4xy^2-8y^3}{x^3+2x^2y-4xy^2-8y^3} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ a \cdot \left( x^3+2x^2y-4xy^2-8y^3 \right) }{ 1 \cdot \left( x^3+2x^2y-4xy^2-8y^3 \right) } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ ax^3+2ax^2y-4axy^2-8ay^3 }{ x^3+2x^2y-4xy^2-8y^3 } \end{aligned} $$ |