Tap the blue circles to see an explanation.
| $$ \begin{aligned}9(6x-2)-3(9x^2-3)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}54x-18-(27x^2-9) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}54x-18-27x^2+9 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-27x^2+54x-9\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{9} $ by $ \left( 6x-2\right) $ $$ \color{blue}{9} \cdot \left( 6x-2\right) = 54x-18 $$Multiply $ \color{blue}{3} $ by $ \left( 9x^2-3\right) $ $$ \color{blue}{3} \cdot \left( 9x^2-3\right) = 27x^2-9 $$ |
| ② | Remove the parentheses by changing the sign of each term within them. $$ - \left( 27x^2-9 \right) = -27x^2+9 $$ |
| ③ | Combine like terms: $$ 54x \color{blue}{-18} -27x^2+ \color{blue}{9} = -27x^2+54x \color{blue}{-9} $$ |