Tap the blue circles to see an explanation.
| $$ \begin{aligned}9(2x+3)+4(x-10)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}18x+27+4x-40 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}22x-13\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{9} $ by $ \left( 2x+3\right) $ $$ \color{blue}{9} \cdot \left( 2x+3\right) = 18x+27 $$Multiply $ \color{blue}{4} $ by $ \left( x-10\right) $ $$ \color{blue}{4} \cdot \left( x-10\right) = 4x-40 $$ |
| ② | Combine like terms: $$ \color{blue}{18x} + \color{red}{27} + \color{blue}{4x} \color{red}{-40} = \color{blue}{22x} \color{red}{-13} $$ |