Tap the blue circles to see an explanation.
| $$ \begin{aligned}8kn^2+4kn-3k+n+1-s(8kn+2k+1)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}8kn^2+4kn-3k+n+1-(8kns+2ks+s) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}8kn^2+4kn-3k+n+1-8kns-2ks-s \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}8kn^2-8kns+4kn-2ks-3k+n-s+1\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{s} $ by $ \left( 8kn+2k+1\right) $ $$ \color{blue}{s} \cdot \left( 8kn+2k+1\right) = 8kns+2ks+s $$ |
| ② | Remove the parentheses by changing the sign of each term within them. $$ - \left( 8kns+2ks+s \right) = -8kns-2ks-s $$ |
| ③ | Combine like terms: $$ 8kn^2-8kns+4kn-2ks-3k+n-s+1 = 8kn^2-8kns+4kn-2ks-3k+n-s+1 $$ |