Tap the blue circles to see an explanation.
| $$ \begin{aligned}6x\cdot3(4x\cdot5+3x-6)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}18x(20x+3x-6) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}18x(23x-6) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}414x^2-108x\end{aligned} $$ | |
| ① | $$ 6 x \cdot 3 = 18 x $$$$ 4 x \cdot 5 = 20 x $$ |
| ② | Combine like terms: $$ \color{blue}{20x} + \color{blue}{3x} -6 = \color{blue}{23x} -6 $$ |
| ③ | Multiply $ \color{blue}{18x} $ by $ \left( 23x-6\right) $ $$ \color{blue}{18x} \cdot \left( 23x-6\right) = 414x^2-108x $$ |