Tap the blue circles to see an explanation.
| $$ \begin{aligned}64(x+\frac{7}{12})^3-112(x+\frac{7}{12})^2+56(x+\frac{7}{12})-7& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}64(x+\frac{7}{12})^3-112(x+\frac{7}{12})^2+56\frac{12x+7}{12}-7 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}64(x+\frac{7}{12})^3-112(x+\frac{7}{12})^2+\frac{672x+392}{12}-7\end{aligned} $$ | |
| ① | Add $x$ and $ \dfrac{7}{12} $ to get $ \dfrac{ \color{purple}{ 12x+7 } }{ 12 }$. Step 1: Write $ x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ② | Multiply $56$ by $ \dfrac{12x+7}{12} $ to get $ \dfrac{ 672x+392 }{ 12 } $. Step 1: Write $ 56 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 56 \cdot \frac{12x+7}{12} & \xlongequal{\text{Step 1}} \frac{56}{\color{red}{1}} \cdot \frac{12x+7}{12} \xlongequal{\text{Step 2}} \frac{ 56 \cdot \left( 12x+7 \right) }{ 1 \cdot 12 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 672x+392 }{ 12 } \end{aligned} $$ |