Tap the blue circles to see an explanation.
| $$ \begin{aligned}6(x-7)-2(x+5)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}6x-42-(2x+10) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}6x-42-2x-10 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}4x-52\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{6} $ by $ \left( x-7\right) $ $$ \color{blue}{6} \cdot \left( x-7\right) = 6x-42 $$Multiply $ \color{blue}{2} $ by $ \left( x+5\right) $ $$ \color{blue}{2} \cdot \left( x+5\right) = 2x+10 $$ |
| ② | Remove the parentheses by changing the sign of each term within them. $$ - \left( 2x+10 \right) = -2x-10 $$ |
| ③ | Combine like terms: $$ \color{blue}{6x} \color{red}{-42} \color{blue}{-2x} \color{red}{-10} = \color{blue}{4x} \color{red}{-52} $$ |