Tap the blue circles to see an explanation.
| $$ \begin{aligned}5xy-3y(2x-y)+6x(8y-x)+7(x^2-2y^2)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}5xy-(6xy-3y^2)+48xy-6x^2+7x^2-14y^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}5xy-6xy+3y^2+48xy-6x^2+7x^2-14y^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-xy+3y^2+48xy-6x^2+7x^2-14y^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}-6x^2+47xy+3y^2+7x^2-14y^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}x^2+47xy-11y^2\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{3y} $ by $ \left( 2x-y\right) $ $$ \color{blue}{3y} \cdot \left( 2x-y\right) = 6xy-3y^2 $$Multiply $ \color{blue}{6x} $ by $ \left( 8y-x\right) $ $$ \color{blue}{6x} \cdot \left( 8y-x\right) = 48xy-6x^2 $$Multiply $ \color{blue}{7} $ by $ \left( x^2-2y^2\right) $ $$ \color{blue}{7} \cdot \left( x^2-2y^2\right) = 7x^2-14y^2 $$ |
| ② | Remove the parentheses by changing the sign of each term within them. $$ - \left( 6xy-3y^2 \right) = -6xy+3y^2 $$ |
| ③ | Combine like terms: $$ \color{blue}{5xy} \color{blue}{-6xy} +3y^2 = \color{blue}{-xy} +3y^2 $$ |
| ④ | Combine like terms: $$ \color{blue}{-xy} +3y^2+ \color{blue}{48xy} -6x^2 = -6x^2+ \color{blue}{47xy} +3y^2 $$ |
| ⑤ | Combine like terms: $$ \color{blue}{-6x^2} +47xy+ \color{red}{3y^2} + \color{blue}{7x^2} \color{red}{-14y^2} = \color{blue}{x^2} +47xy \color{red}{-11y^2} $$ |