Tap the blue circles to see an explanation.
| $$ \begin{aligned}5c^2d(9c^2d^2-4c^3d-2)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}45c^4d^3-20c^5d^2-10c^2d \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-20c^5d^2+45c^4d^3-10c^2d\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{5c^2d} $ by $ \left( 9c^2d^2-4c^3d-2\right) $ $$ \color{blue}{5c^2d} \cdot \left( 9c^2d^2-4c^3d-2\right) = 45c^4d^3-20c^5d^2-10c^2d $$ |
| ② | Combine like terms: $$ -20c^5d^2+45c^4d^3-10c^2d = -20c^5d^2+45c^4d^3-10c^2d $$ |