Tap the blue circles to see an explanation.
| $$ \begin{aligned}5(x-2)-2(x-9)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}5x-10-(2x-18) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}5x-10-2x+18 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}3x+8\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{5} $ by $ \left( x-2\right) $ $$ \color{blue}{5} \cdot \left( x-2\right) = 5x-10 $$Multiply $ \color{blue}{2} $ by $ \left( x-9\right) $ $$ \color{blue}{2} \cdot \left( x-9\right) = 2x-18 $$ |
| ② | Remove the parentheses by changing the sign of each term within them. $$ - \left( 2x-18 \right) = -2x+18 $$ |
| ③ | Combine like terms: $$ \color{blue}{5x} \color{red}{-10} \color{blue}{-2x} + \color{red}{18} = \color{blue}{3x} + \color{red}{8} $$ |