Tap the blue circles to see an explanation.
| $$ \begin{aligned}5(4y+3)-3(7y-2)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}20y+15-(21y-6) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}20y+15-21y+6 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-y+21\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{5} $ by $ \left( 4y+3\right) $ $$ \color{blue}{5} \cdot \left( 4y+3\right) = 20y+15 $$Multiply $ \color{blue}{3} $ by $ \left( 7y-2\right) $ $$ \color{blue}{3} \cdot \left( 7y-2\right) = 21y-6 $$ |
| ② | Remove the parentheses by changing the sign of each term within them. $$ - \left( 21y-6 \right) = -21y+6 $$ |
| ③ | Combine like terms: $$ \color{blue}{20y} + \color{red}{15} \color{blue}{-21y} + \color{red}{6} = \color{blue}{-y} + \color{red}{21} $$ |