Tap the blue circles to see an explanation.
| $$ \begin{aligned}5(2x+4)-(5z+5)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}10x+20-(5z+5) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}10x+20-5z-5 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}10x-5z+15\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{5} $ by $ \left( 2x+4\right) $ $$ \color{blue}{5} \cdot \left( 2x+4\right) = 10x+20 $$ |
| ② | Remove the parentheses by changing the sign of each term within them. $$ - \left( 5z+5 \right) = -5z-5 $$ |
| ③ | Combine like terms: $$ 10x+ \color{blue}{20} -5z \color{blue}{-5} = 10x-5z+ \color{blue}{15} $$ |