Tap the blue circles to see an explanation.
| $$ \begin{aligned}5\cdot(2-x)+2\cdot(1+4w)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}10-5x+2+8w \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}8w-5x+12\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{5} $ by $ \left( 2-x\right) $ $$ \color{blue}{5} \cdot \left( 2-x\right) = 10-5x $$Multiply $ \color{blue}{2} $ by $ \left( 1+4w\right) $ $$ \color{blue}{2} \cdot \left( 1+4w\right) = 2+8w $$ |
| ② | Combine like terms: $$ \color{blue}{10} -5x+ \color{blue}{2} +8w = 8w-5x+ \color{blue}{12} $$ |