Tap the blue circles to see an explanation.
| $$ \begin{aligned}5\cdot(1-4x)-4(x+5)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}5-20x-(4x+20) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}5-20x-4x-20 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-24x-15\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{5} $ by $ \left( 1-4x\right) $ $$ \color{blue}{5} \cdot \left( 1-4x\right) = 5-20x $$Multiply $ \color{blue}{4} $ by $ \left( x+5\right) $ $$ \color{blue}{4} \cdot \left( x+5\right) = 4x+20 $$ |
| ② | Remove the parentheses by changing the sign of each term within them. $$ - \left( 4x+20 \right) = -4x-20 $$ |
| ③ | Combine like terms: $$ \color{blue}{5} \color{red}{-20x} \color{red}{-4x} \color{blue}{-20} = \color{red}{-24x} \color{blue}{-15} $$ |