Tap the blue circles to see an explanation.
| $$ \begin{aligned}4y(y-3)-2y(y-3)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}4y^2-12y-(2y^2-6y) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}4y^2-12y-2y^2+6y \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}2y^2-6y\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{4y} $ by $ \left( y-3\right) $ $$ \color{blue}{4y} \cdot \left( y-3\right) = 4y^2-12y $$Multiply $ \color{blue}{2y} $ by $ \left( y-3\right) $ $$ \color{blue}{2y} \cdot \left( y-3\right) = 2y^2-6y $$ |
| ② | Remove the parentheses by changing the sign of each term within them. $$ - \left( 2y^2-6y \right) = -2y^2+6y $$ |
| ③ | Combine like terms: $$ \color{blue}{4y^2} \color{red}{-12y} \color{blue}{-2y^2} + \color{red}{6y} = \color{blue}{2y^2} \color{red}{-6y} $$ |