Tap the blue circles to see an explanation.
| $$ \begin{aligned}4x^4+4(1+x)^4+17x^2(1+x)^2+132x(x+1)(2x^2+2x+1)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}4x^4+4(x^4+4x^3+6x^2+4x+1)+17x^2(1+2x+x^2)+132x(x+1)(2x^2+2x+1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}4x^4+4x^4+16x^3+24x^2+16x+4+17x^2+34x^3+17x^4+(132x^2+132x)(2x^2+2x+1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}8x^4+16x^3+24x^2+16x+4+17x^2+34x^3+17x^4+(132x^2+132x)(2x^2+2x+1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} } }}}25x^4+50x^3+41x^2+16x+4+(132x^2+132x)(2x^2+2x+1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle8}{\textcircled {8}} } }}}25x^4+50x^3+41x^2+16x+4+264x^4+264x^3+132x^2+264x^3+264x^2+132x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle9}{\textcircled {9}} } }}}25x^4+50x^3+41x^2+16x+4+264x^4+528x^3+396x^2+132x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle10}{\textcircled {10}} } }}}289x^4+578x^3+437x^2+148x+4\end{aligned} $$ | |
| ① | $$ (1+x)^4 = (1+x)^2 \cdot (1+x)^2 $$ |
| ② | Find $ \left(1+x\right)^2 $ using formula. $$ (A + B)^2 = \color{blue}{A^2} + 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ 1 } $ and $ B = \color{red}{ x }$. $$ \begin{aligned}\left(1+x\right)^2 = \color{blue}{1^2} +2 \cdot 1 \cdot x + \color{red}{x^2} = 1+2x+x^2\end{aligned} $$ |
| ③ | Multiply each term of $ \left( \color{blue}{1+2x+x^2}\right) $ by each term in $ \left( 1+2x+x^2\right) $. $$ \left( \color{blue}{1+2x+x^2}\right) \cdot \left( 1+2x+x^2\right) = 1+2x+x^2+2x+4x^2+2x^3+x^2+2x^3+x^4 $$ |
| ④ | Combine like terms: $$ 1+ \color{blue}{2x} + \color{red}{x^2} + \color{blue}{2x} + \color{green}{4x^2} + \color{orange}{2x^3} + \color{green}{x^2} + \color{orange}{2x^3} +x^4 = x^4+ \color{orange}{4x^3} + \color{green}{6x^2} + \color{blue}{4x} +1 $$Find $ \left(1+x\right)^2 $ using formula. $$ (A + B)^2 = \color{blue}{A^2} + 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ 1 } $ and $ B = \color{red}{ x }$. $$ \begin{aligned}\left(1+x\right)^2 = \color{blue}{1^2} +2 \cdot 1 \cdot x + \color{red}{x^2} = 1+2x+x^2\end{aligned} $$ |
| ⑤ | Multiply $ \color{blue}{4} $ by $ \left( x^4+4x^3+6x^2+4x+1\right) $ $$ \color{blue}{4} \cdot \left( x^4+4x^3+6x^2+4x+1\right) = 4x^4+16x^3+24x^2+16x+4 $$Multiply $ \color{blue}{17x^2} $ by $ \left( 1+2x+x^2\right) $ $$ \color{blue}{17x^2} \cdot \left( 1+2x+x^2\right) = 17x^2+34x^3+17x^4 $$Multiply $ \color{blue}{132x} $ by $ \left( x+1\right) $ $$ \color{blue}{132x} \cdot \left( x+1\right) = 132x^2+132x $$ |
| ⑥ | Combine like terms: $$ \color{blue}{4x^4} + \color{blue}{4x^4} +16x^3+24x^2+16x+4 = \color{blue}{8x^4} +16x^3+24x^2+16x+4 $$ |
| ⑦ | Combine like terms: $$ \color{blue}{8x^4} + \color{red}{16x^3} + \color{green}{24x^2} +16x+4+ \color{green}{17x^2} + \color{red}{34x^3} + \color{blue}{17x^4} = \\ = \color{blue}{25x^4} + \color{red}{50x^3} + \color{green}{41x^2} +16x+4 $$ |
| ⑧ | Multiply each term of $ \left( \color{blue}{132x^2+132x}\right) $ by each term in $ \left( 2x^2+2x+1\right) $. $$ \left( \color{blue}{132x^2+132x}\right) \cdot \left( 2x^2+2x+1\right) = 264x^4+264x^3+132x^2+264x^3+264x^2+132x $$ |
| ⑨ | Combine like terms: $$ 264x^4+ \color{blue}{264x^3} + \color{red}{132x^2} + \color{blue}{264x^3} + \color{red}{264x^2} +132x = 264x^4+ \color{blue}{528x^3} + \color{red}{396x^2} +132x $$ |
| ⑩ | Combine like terms: $$ \color{blue}{25x^4} + \color{red}{50x^3} + \color{green}{41x^2} + \color{orange}{16x} +4+ \color{blue}{264x^4} + \color{red}{528x^3} + \color{green}{396x^2} + \color{orange}{132x} = \\ = \color{blue}{289x^4} + \color{red}{578x^3} + \color{green}{437x^2} + \color{orange}{148x} +4 $$ |