Tap the blue circles to see an explanation.
| $$ \begin{aligned}4x^2(x+1)^2-(2x+1)^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}4x^2(x^2+2x+1)-(4x^2+4x+1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}4x^4+8x^3+4x^2-(4x^2+4x+1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}4x^4+8x^3+4x^2-4x^2-4x-1 \xlongequal{ } \\[1 em] & \xlongequal{ }4x^4+8x^3+ \cancel{4x^2} -\cancel{4x^2}-4x-1 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}4x^4+8x^3-4x-1\end{aligned} $$ | |
| ① | Find $ \left(x+1\right)^2 $ using formula. $$ (A + B)^2 = \color{blue}{A^2} + 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ x } $ and $ B = \color{red}{ 1 }$. $$ \begin{aligned}\left(x+1\right)^2 = \color{blue}{x^2} +2 \cdot x \cdot 1 + \color{red}{1^2} = x^2+2x+1\end{aligned} $$Find $ \left(2x+1\right)^2 $ using formula. $$ (A + B)^2 = \color{blue}{A^2} + 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ 2x } $ and $ B = \color{red}{ 1 }$. $$ \begin{aligned}\left(2x+1\right)^2 = \color{blue}{\left( 2x \right)^2} +2 \cdot 2x \cdot 1 + \color{red}{1^2} = 4x^2+4x+1\end{aligned} $$ |
| ② | Multiply $ \color{blue}{4x^2} $ by $ \left( x^2+2x+1\right) $ $$ \color{blue}{4x^2} \cdot \left( x^2+2x+1\right) = 4x^4+8x^3+4x^2 $$ |
| ③ | Remove the parentheses by changing the sign of each term within them. $$ - \left( 4x^2+4x+1 \right) = -4x^2-4x-1 $$ |
| ④ | Combine like terms: $$ 4x^4+8x^3+ \, \color{blue}{ \cancel{4x^2}} \, \, \color{blue}{ -\cancel{4x^2}} \,-4x-1 = 4x^4+8x^3-4x-1 $$ |