Tap the blue circles to see an explanation.
| $$ \begin{aligned}4x^2(x^2-3)(x+4)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(4x^4-12x^2)(x+4) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}4x^5+16x^4-12x^3-48x^2\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{4x^2} $ by $ \left( x^2-3\right) $ $$ \color{blue}{4x^2} \cdot \left( x^2-3\right) = 4x^4-12x^2 $$ |
| ② | Multiply each term of $ \left( \color{blue}{4x^4-12x^2}\right) $ by each term in $ \left( x+4\right) $. $$ \left( \color{blue}{4x^4-12x^2}\right) \cdot \left( x+4\right) = 4x^5+16x^4-12x^3-48x^2 $$ |