Tap the blue circles to see an explanation.
| $$ \begin{aligned}4w^2+24w+\frac{32}{w^2}-4w-32& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{4w^4+24w^3+32}{w^2}-4w-32 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{4w^4+20w^3+32}{w^2}-32 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{4w^4+20w^3-32w^2+32}{w^2}\end{aligned} $$ | |
| ① | Add $4w^2+24w$ and $ \dfrac{32}{w^2} $ to get $ \dfrac{ \color{purple}{ 4w^4+24w^3+32 } }{ w^2 }$. Step 1: Write $ 4w^2+24w $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ② | Subtract $4w$ from $ \dfrac{4w^4+24w^3+32}{w^2} $ to get $ \dfrac{ \color{purple}{ 4w^4+20w^3+32 } }{ w^2 }$. Step 1: Write $ 4w $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ③ | Subtract $32$ from $ \dfrac{4w^4+20w^3+32}{w^2} $ to get $ \dfrac{ \color{purple}{ 4w^4+20w^3-32w^2+32 } }{ w^2 }$. Step 1: Write $ 32 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |