Tap the blue circles to see an explanation.
| $$ \begin{aligned}4+5(3x+2)-2x& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}4+15x+10-2x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}15x+14-2x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}13x+14\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{5} $ by $ \left( 3x+2\right) $ $$ \color{blue}{5} \cdot \left( 3x+2\right) = 15x+10 $$ |
| ② | Combine like terms: $$ \color{blue}{4} +15x+ \color{blue}{10} = 15x+ \color{blue}{14} $$ |
| ③ | Combine like terms: $$ \color{blue}{15x} +14 \color{blue}{-2x} = \color{blue}{13x} +14 $$ |