Tap the blue circles to see an explanation.
| $$ \begin{aligned}4(x+h)^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}4(x^2+2hx+h^2) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}4x^2+8hx+4h^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}4h^2+8hx+4x^2\end{aligned} $$ | |
| ① | Find $ \left(x+h\right)^2 $ using formula. $$ (A + B)^2 = \color{blue}{A^2} + 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ x } $ and $ B = \color{red}{ h }$. $$ \begin{aligned}\left(x+h\right)^2 = \color{blue}{x^2} +2 \cdot x \cdot h + \color{red}{h^2} = x^2+2hx+h^2\end{aligned} $$ |
| ② | Multiply $ \color{blue}{4} $ by $ \left( x^2+2hx+h^2\right) $ $$ \color{blue}{4} \cdot \left( x^2+2hx+h^2\right) = 4x^2+8hx+4h^2 $$ |
| ③ | Combine like terms: $$ 4h^2+8hx+4x^2 = 4h^2+8hx+4x^2 $$ |